Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-46974
Int J Pharm 2013 Jun 25;4501-2:177-84. doi: 10.1016/j.ijpharm.2013.04.048.
Show Gene links Show Anatomy links

Female hormone release of microencapsulated Xenopus laevis ovarian cells.

Liu C , Xia X , Sun L , Luan X , Jin Y , Liu L .


???displayArticle.abstract???
Cell microencapsulation has potential for the treatment of endocrine diseases. This study aims to probe the feasibility of Xenopus laevis as an animal model for cell microencapsulation and transplantation and to evaluate the female hormone release of microencapsulated X. laevis ovarian cells. The cells were harvested, cultured and microencapsulated into alginate-chitosan-alginate microcapsules with an electrostatic generator. The estradiol and progesterone releases of the microencapsulated X. laevis ovarian cells were investigated both in vitro and in vivo. The results showed that the microencapsulated cells kept secreting estradiol and progesterone in vitro for 60 days. After transplantation, serum estradiol and progesterone levels in ovariectomized X. laevis remained elevated for 60 days. X. laevis has been proved to be a suitable animal model for cell microencapsulation and transplantation. Microencapsulated ovarian cells may be considered as a promising endogenous drug delivery system for the treatment of deficiency of female hormones.

???displayArticle.pubmedLink??? 23623793
???displayArticle.link??? Int J Pharm