Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-47249
Arch Pharm Res 2014 Nov 01;3711:1445-53. doi: 10.1007/s12272-013-0176-5.
Show Gene links Show Anatomy links

Inhibition of human Kv3.1 current expressed in Xenopus oocytes by the toxic venom fraction of Androctonus australis hector.

Cheikh A , Benkhalifa R , Landoulsi Z , Chatti I , Ayeb ME .


???displayArticle.abstract???
AahG50, the toxic fraction of Androctonus australis hector venom, was studied on human Kv3.1 channels activation, stably expressed in Xenopus oocytes using the two-electrode voltage clamp technique. AahG50 reduced Kv3.1 currents in a reversible concentration-dependent manner, with an IC50 value and a Hill coefficient of 40.4 ± 0.2 μg/ml and 1.3 ± 0.05, respectively. AahG50 inhibited IKv3.1 without modifying the current activation kinetics. The AahG50-induced inhibition of Kv3.1 channels was voltage-dependent, with a gradual increase at lower concentrations and over the voltage range of channels opening. However, at higher concentrations, the inhibition exhibited voltage dependence only in the first range of channels opening from -20 to +10 mV, but demonstrates a low degree of voltage-dependence when channels are fully activated. In the literature, toxins have previously been isolated from AahG50, KAaH1 and KAaH2 and were reported not to have any effect on IKv3.1. The present article's findings suggest that AahG50 may contain a peptidic component active on Kv3.1 channels, which inhibits IKv3.1 in a selective manner.

???displayArticle.pubmedLink??? 23771502
???displayArticle.link??? Arch Pharm Res


Species referenced: Xenopus laevis
Genes referenced: kcnc1 kcnc3