Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-47801
Plant Cell Environ 2014 May 01;375:1159-70. doi: 10.1111/pce.12224.
Show Gene links Show Anatomy links

Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice.

Wang X , Wang Y , Piñeros MA , Wang Z , Wang W , Li C , Wu Z , Kochian LV , Wu P .


???displayArticle.abstract???
We characterized the function of two rice phosphate (Pi) transporters: OsPHT1;9 (OsPT9) and OsPHT1;10 (OsPT10). OsPT9 and OsPT10 were expressed in the root epidermis, root hairs and lateral roots, with their expression being specifically induced by Pi starvation. In leaves, expression of the two genes was observed in both mesophyll and vasculature. High-affinity Km values for Pi transport of OsPT9 and OsPT10 were determined by yeast experiments and two-electrode voltage clamp analysis of anion transport in Xenopus oocytes expressing OsPT9 and OsPT10. Pi uptake and Pi concentrations in transgenic plants harbouring overexpressed OsPT9 and OsPT10 were determined by Pi concentration analysis and (33) P-labelled Pi uptake rate analysis. Significantly higher Pi uptake rates in transgenic plants compared with wild-type plants were observed under both high-Pi and low-Pi solution culture conditions. Conversely, although no alterations in Pi concentration were found in OsPT9 or OsPT10 knockdown plants, a significant reduction in Pi concentration in both shoots and roots was observed in double-knockdown plants grown under both high- and low-Pi conditions. Taken together, our results suggest that OsPT9 and OsPT10 redundantly function in Pi uptake.

???displayArticle.pubmedLink??? 24344809
???displayArticle.link??? Plant Cell Environ