Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-47862
J Cell Biol. October 14, 2013; 203 (1): 57-71.

Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin.

Raghuram N , Strickfaden H , McDonald D , Williams K , Fang H , Mizzen C , Hayes JJ , Th'ng J , Hendzel MJ .


Abstract
Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.

PubMed ID: 24100296
PMC ID: PMC3798258
Article link: J Cell Biol.
Grant support: R01 GM052426 NIGMS NIH HHS

Genes referenced: cdk2 cfp mtor nucb1 pin1 ppp2ca
Antibodies referenced:
Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [3.2.2]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556