Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-48563
Curr Biol February 17, 2014; 24 (4): 422-7.

Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod factor receptor 5.

Antolín-Llovera M , Ried MK , Parniske M .


Abstract
Plants form root symbioses with fungi and bacteria to improve their nutrient supply. SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for phosphate-acquiring arbuscular mycorrhiza, as well as for the nitrogen-fixing root nodule symbiosis of legumes and actinorhizal plants, but its precise function was completely unclear. Here we show that the extracytoplasmic region of SYMRK, which comprises three leucine-rich repeats (LRRs) and a malectin-like domain (MLD) related to a carbohydrate-binding protein from Xenopus laevis, is cleaved to release the MLD in the absence of symbiotic stimulation. A conserved sequence motif--GDPC--that connects the MLD to the LRRs is required for MLD release. We discovered that Nod factor receptor 5 (NFR5) forms a complex with the SYMRK version that remains after MLD release (SYMRK-ΔMLD). SYMRK-ΔMLD outcompeted full-length SYMRK for NFR5 interaction, indicating that the MLD negatively interferes with complex formation. SYMRK-ΔMLD is present at lower amounts than MLD, suggesting rapid degradation after MLD release. A deletion of the entire extracytoplasmic region increased protein abundance, suggesting that the LRR region promotes degradation. Curiously, this deletion led to excessive infection thread formation, highlighting the importance of fine-tuned regulation of SYMRK by its ectodomain.

PubMed ID: 24508172
Article link: Curr Biol

Genes referenced: arsa.1 atn1 mlec



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.2


Major funding for Xenbase is provided by grant P41 HD064556