Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-48738
PLoS One 2014 Jan 01;93:e93315. doi: 10.1371/journal.pone.0093315.
Show Gene links Show Anatomy links

S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

Jerng HH , Pfaffinger PJ .


???displayArticle.abstract???
Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed, and that the S-glutathionylation mechanism may play a previously unappreciated role in mediating excitability changes and neuropathologies associated with ROS.

???displayArticle.pubmedLink??? 24675763
???displayArticle.pmcLink??? PMC3968176
???displayArticle.link??? PLoS One
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: cntrl dpp6 kcna4 kcnd1 kcnd2 tert


???attribute.lit??? ???displayArticles.show???
References [+] :
Barghaan, Dynamic coupling of voltage sensor and gate involved in closed-state inactivation of kv4.2 channels. 2009, Pubmed, Xenbase