Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-49622
Cell Rep October 23, 2014; 9 (2): 688-700.

The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-β signaling.

Demagny H , Araki T , De Robertis EM .


Abstract
Smad4 is a major tumor suppressor currently thought to function constitutively in the transforming growth factor β (TGF-β)-signaling pathway. Here, we report that Smad4 activity is directly regulated by the Wnt and fibroblast growth factor (FGF) pathways through GSK3 and mitogen-activated protein kinase (MAPK) phosphorylation sites. FGF activates MAPK, which primes three sequential GSK3 phosphorylations that generate a Wnt-regulated phosphodegron bound by the ubiquitin E3 ligase β-TrCP. In the presence of FGF, Wnt potentiates TGF-β signaling by preventing Smad4 GSK3 phosphorylations that inhibit a transcriptional activation domain located in the linker region. When MAPK is not activated, the Wnt and TGF-β signaling pathways remain insulated from each other. In Xenopus embryos, these Smad4 phosphorylations regulate germ-layer specification and Spemann organizer formation. The results show that three major signaling pathways critical in development and cancer are integrated at the level of Smad4.

PubMed ID: 25373906
Article link: Cell Rep

Genes referenced: gsk3b mapk1 smad4.1 smad4.2



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.4


Major funding for Xenbase is provided by grant P41 HD064556