Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5016
J Biomol Screen 2003 Feb 01;81:39-49. doi: 10.1177/1087057102239665.
Show Gene links Show Anatomy links

Galpha(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization.

Liu AM , Ho MK , Wong CS , Chan JH , Pau AH , Wong YH .


???displayArticle.abstract???
G protein-coupled receptors (GPCRs) represent a class of important therapeutic targets for drug discovery. The integration of GPCRs into contemporary high-throughput functional assays is critically dependent on the presence of appropriate G proteins. Given that different GPCRs can discriminate against distinct G proteins, a universal G protein adapter is extremely desirable. In this report, the authors evaluated two highly promiscuous Galpha(16/z) chimeras, 16z25 and 16z44, for their ability to translate GPCR activation into Ca(2+) mobilization using the fluorescence imaging plate reader (FLIPR) and aequorin. A panel of 24 G(s)- or G(i)-coupled receptors was examined for their functional association with the Galpha(16/z) chimeras. Although most of the GPCRs tested were incapable of inducing Ca(2+) mobilization upon their activation by specific agonists, the introduction of 16z25 or 16z44 allowed all of these GPCRs to mediate agonist-induced Ca(2+) mobilization. In contrast, only 16 of the GPCRs tested were capable of using Galpha(16) to mobilize intracellular Ca(2+). Analysis of dose-response curves obtained with the delta-opioid, dopamine D(1), and Xenopus melatonin Mel1c receptors revealed that the Galpha(16/z) chimeras possess better sensitivity than Galpha(16) in both the FLIPR and aequorin assays. Collectively, these studies help to validate the promiscuity of the Galpha(16/z) chimeras as well as their application in contemporary drug-screening assays that are based on ligand-induced Ca(2+) mobilization.

???displayArticle.pubmedLink??? 12854997
???displayArticle.link??? J Biomol Screen


Species referenced: Xenopus
Genes referenced: gprc6a mtnr1c suclg1