Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5019
Dev Cell. July 1, 2003; 5 (1): 175-84.

Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes.

Mould JA , Paterson RG , Takeda M , Ohigashi Y , Venkataraman P , Lamb RA , Pinto LH .


Abstract
Successful uncoating of the influenza B virus in endosomes is predicted to require acidification of the interior of the virus particle. We report that a virion component, the BM2 integral membrane protein, when expressed in Xenopus oocytes or in mammalian cells, causes acidification of the cells and possesses ion channel activity consistent with proton conduction. Furthermore, coexpression of BM2 with hemagglutinin (HA) glycoprotein prevents HA from adopting its low-pH-induced conformation during transport to the cell surface, and overexpression of BM2 causes a delay in intracellular transport in the exocytic pathway and causes morphological changes in the Golgi. These data are consistent with BM2 equilibrating the pH gradient between the Golgi and the cytoplasm. The transmembrane domain of BM2 protein and the influenza A virus A/M2 ion channel protein both contain the motif HXXXW, and, for both proteins, the His and Trp residues are important for channel function.

PubMed ID: 12852861
Article link: Dev Cell.
Grant support: AI-31882 NIAID NIH HHS , R01 AI-23173 NIAID NIH HHS , R37 AI-20201 NIAID NIH HHS

Genes referenced:
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556