Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5065
Biochemistry 2003 Jul 08;4226:7879-84. doi: 10.1021/bi034555t.
Show Gene links Show Anatomy links

High stability of Discosoma DsRed as compared to Aequorea EGFP.

Verkhusha VV , Kuznetsova IM , Stepanenko OV , Zaraisky AG , Shavlovsky MM , Turoverov KK , Uversky VN .


???displayArticle.abstract???
Comparative analysis of conformational stabilities was performed for two widely used genetic reporters, EGFP and DsRed, proteins exhibiting similar beta-can folds, but possessing different oligomeric organization and chromophore structures. Two factors affecting protein stability in vitro, such as elevated temperatures and a chaotropic agent guanidine hydrochloride, were studied. In vivo tolerance of the fluorescence proteins to proteasomal-based degradation was studied in insect and mammalian cells, and in Xenopus embryos. The apparent rate constants of thermal and GdmCl-induced denaturation were several orders of magnitude lower for DsRed than for EGFP. DsRed lifetimes severalfold longer than those of EGFP were observed in cultured cells and in embryos. The remarkable fluorescence stability of DsRed under the all conditions that have been studied is attributed to a significant extent to its tetrameric organization. Therefore, DsRed can be used as a genetic reporter and advanced population marker with a significantly extended intracellular lifespan.

???displayArticle.pubmedLink??? 12834339
???displayArticle.link??? Biochemistry