Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-50650
J Biol Chem 2015 Feb 06;2906:3552-62. doi: 10.1074/jbc.M114.619221.
Show Gene links Show Anatomy links

Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects.

Gill-Thind JK , Dhankher P , D'Oyley JM , Sheppard TD , Millar NS .


???displayArticle.abstract???
Activation of nicotinic acetylcholine receptors (nAChRs) is associated with the binding of agonists such as acetylcholine to an extracellular site that is located at the interface between two adjacent receptor subunits. More recently, there has been considerable interest in compounds, such as positive and negative allosteric modulators (PAMs and NAMs), that are able to modulate nAChR function by binding to distinct allosteric sites. Here we examined a series of compounds differing only in methyl substitution of a single aromatic ring. This series of compounds includes a previously described α7-selective allosteric agonist, cis-cis-4-p-tolyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4MP-TQS), together with all other possible combinations of methyl substitution at a phenyl ring (18 additional compounds). Studies conducted with this series of compounds have revealed five distinct pharmacological effects on α7 nAChRs. These five effects can be summarized as: 1) nondesensitizing activation (allosteric agonists), 2) potentiation associated with minimal effects on receptor desensitization (type I PAMs), 3) potentiation associated with reduced desensitization (type II PAMs), 4) noncompetitive antagonism (NAMs), and 5) compounds that have no effect on orthosteric agonist responses but block allosteric modulation (silent allosteric modulators (SAMs)). Several lines of experimental evidence are consistent with all of these compounds acting at a common, transmembrane allosteric site. Notably, all of these chemically similar compounds that have been classified as nondesensitizing allosteric agonists or as nondesensitizing (type II) PAMs are cis-cis-diastereoisomers, whereas all of the NAMs, SAMs, and type I PAMs are cis-trans-diastereoisomers. Our data illustrate the remarkable pharmacological diversity of allosteric modulators acting on nAChRs.

???displayArticle.pubmedLink??? 25516597
???displayArticle.pmcLink??? PMC4319022
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: chrna4 pam


???attribute.lit??? ???displayArticles.show???
References [+] :
Albuquerque, Mammalian nicotinic acetylcholine receptors: from structure to function. 2009, Pubmed