Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51287
PLoS One 2015 Sep 01;109:e0136779. doi: 10.1371/journal.pone.0136779.
Show Gene links Show Anatomy links

The Role of Flexible Loops in Folding, Trafficking and Activity of Equilibrative Nucleoside Transporters.

Aseervatham J , Tran L , Machaca K , Boudker O .


???displayArticle.abstract???
Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues. The structure and mechanism, by which ENTs catalyze trans-membrane transport of their substrates, remain unknown. To identify the core of the transporter needed for stability, activity, and for its correct trafficking to the plasma membrane, we have expressed human ENT deletion mutants in Xenopus laevis oocytes and determined their localization, transport properties and susceptibility to inhibition. We found that the carboxyl terminal trans-membrane segments are essential for correct protein folding and trafficking. In contrast, the soluble extracellular and intracellular loops appear to be dispensable, and must be involved in the fine-tuning of transport regulation.

???displayArticle.pubmedLink??? 26406980
???displayArticle.pmcLink??? PMC4583308
???displayArticle.link??? PLoS One


Species referenced: Xenopus laevis
Genes referenced: csnk2b pmch pycard


???attribute.lit??? ???displayArticles.show???
References [+] :
Acimovic, Molecular evolution of the equilibrative nucleoside transporter family: identification of novel family members in prokaryotes and eukaryotes. 2002, Pubmed