Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51294
EMBO Rep November 1, 2015; 16 (11): 1501-10.

Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit.

Heim A , Konietzny A , Mayer TU .


Abstract
Entry into mitosis is mediated by the phosphorylation of key cell cycle regulators by cyclin-dependent kinase 1 (Cdk1). In Xenopus embryos, the M-phase-promoting activity of Cdk1 is antagonized by protein phosphatase PP2A-B55. Hence, to ensure robust cell cycle transitions, Cdk1 and PP2A-B55 must be regulated so that their activities are mutually exclusive. The mechanism underlying PP2A-B55 inactivation at mitotic entry is well understood: Cdk1-activated Greatwall (Gwl) kinase phosphorylates Ensa/Arpp19, thereby enabling them to bind to and inhibit PP2A-B55. However, the re-activation of PP2A-B55 during mitotic exit, which is essential for cell cycle progression, is less well understood. Here, we identify protein phosphatase PP1 as an essential component of the PP2A-B55 re-activation pathway in Xenopus embryo extracts. PP1 initiates the re-activation of PP2A-B55 by dephosphorylating Gwl. We provide evidence that PP1 targets the auto-phosphorylation site of Gwl, resulting in efficient Gwl inactivation. This step is necessary to facilitate subsequent complete dephosphorylation of Gwl by PP2A-B55. Thus, by identifying PP1 as the phosphatase initiating Gwl inactivation, our study provides the molecular explanation for how Cdk1 inactivation is coupled to PP2A-B55 re-activation at mitotic exit.

PubMed ID: 26396231
PMC ID: PMC4641502
Article link: EMBO Rep

Genes referenced: cdk1 mastl mink1 npy4r ptpa

References:
Beullens, 2001, Pubmed [+]


Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.1


Major funding for Xenbase is provided by grant P41 HD064556