Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51584
Sci Rep 2015 Jan 12;5:16450. doi: 10.1038/srep16450.
Show Gene links Show Anatomy links

Conversion of a light-driven proton pump into a light-gated ion channel.

Vogt A , Guo Y , Tsunoda SP , Kateriya S , Elstner M , Hegemann P .


???displayArticle.abstract???
Interest in microbial rhodopsins with ion pumping activity has been revitalized in the context of optogenetics, where light-driven ion pumps are used for cell hyperpolarization and voltage sensing. We identified an opsin-encoding gene (CsR) in the genome of the arctic alga Coccomyxa subellipsoidea C-169 that can produce large photocurrents in Xenopus oocytes. We used this property to analyze the function of individual residues in proton pumping. Modification of the highly conserved proton shuttling residue R83 or its interaction partner Y57 strongly reduced pumping power. Moreover, this mutation converted CsR at moderate electrochemical load into an operational proton channel with inward or outward rectification depending on the amino acid substitution. Together with molecular dynamics simulations, these data demonstrate that CsR-R83 and its interacting partner Y57 in conjunction with water molecules forms a proton shuttle that blocks passive proton flux during the dark-state but promotes proton movement uphill upon illumination.

???displayArticle.pubmedLink??? 26597707
???displayArticle.pmcLink??? PMC4657025
???displayArticle.link??? Sci Rep


Species referenced: Xenopus laevis
Genes referenced: atr rho uqcc6


???attribute.lit??? ???displayArticles.show???
References [+] :
Azuma, Changes of egg retinoids during the development of Xenopus laevis. 1990, Pubmed, Xenbase