Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5165
Biol Cell March 1, 2003; 95 (2): 107-13.

A functional deadenylation assay identifies human CUG-BP as a deadenylation factor.

Paillard L , Legagneux V , Beverley Osborne H .


Abstract
CUG-BP is a human nuclear and cytoplasmic RNA-binding protein. A role in the control of alternative splicing has been reported, but to date no cytoplasmic function for this protein has been demonstrated. A close sequence homolog of CUG-BP is EDEN-BP that is required for the specific cytoplasmic poly(A) tail shortening of certain mRNAs after fertilization of Xenopus eggs. Here, we show that human CUG-BP and Xenopus EDEN-BP have very similar RNA-binding specificities. In addition, we use a deadenylation assay to show that CUG-BP is able to act as a deadenylation factor. In contrast, a mutant form of CUG-BP, though still able to bind to RNA with a specificity similar to that of wild-type CUG-BP, does not act as a deadenylation factor. It is suggested that the CUG expansion associated with Type 1 myotonic dystrophy can affect the function or the activity of CUG-BP, leading to a trans-dominant effect on normal RNA processing. The results presented here identify CUG-BP-dependent deadenylation as a potential cytoplasmic target for this trans-dominant effect.

PubMed ID: 12799066
Article link: Biol Cell


Species referenced: Xenopus laevis
Genes referenced: celf1