Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Mol Recognit. February 1, 2017; 30 (2):

Mechanics in human fibroblasts and progeria: Lamin A mutation E145K results in stiffening of nuclei.

Apte K , Stick R , Radmacher M .

The lamina is a filamentous meshwork beneath the inner nuclear membrane that confers mechanical stability to nuclei. The E145K mutation in lamin A causes Hutchinson-Gilford progeria syndrome (HGPS). It affects lamin filament assembly and induces profound changes in the nuclear architecture. Expression of wild-type and E145K lamin A in Xenopus oocytes followed by atomic force microscopy (AFM) probing of isolated oocyte nuclei has shown significant changes in the mechanical properties of the lamina. Nuclei of oocytes expressing E145K lamin A are stiffer than those expressing wild-type lamin A. Here we present mechanical measurements by AFM on dermal fibroblasts obtained from a 4-year-old progeria patient bearing the E145K lamin A mutation and compared it to fibroblasts obtained from 2 healthy donors of 10 and 61 years of age, respectively. The abnormal shape of nuclei expressing E145K lamin A was analyzed by fluorescence microscopy. Lamina thickness was measured using electron micrographs. Fluorescence microscopy showed alterations in the actin network of progeria cells. AFM probing of whole dermal fibroblasts did not demonstrate significant differences in the elastic moduli of nuclear and cytoplasmic cell regions. In contrast, AFM measurements of isolated nuclei showed that nuclei of progeria and old person''s cells are significantly stiffer than those of the young person, indicating that the process of aging, be it natural or abnormal, increases nuclear stiffness. Our results corroborate AFM data obtained using Xenopus oocyte nuclei and prove that the presence of E145K lamin A abnormally increases nuclear stiffness.

PubMed ID: 27677907
Article link: J Mol Recognit.

Genes referenced: lmna

My Xenbase: [ Log-in / Register ]
version: [4.5.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556