Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-52460
Anat Sci Int 2017 Mar 01;922:200-206. doi: 10.1007/s12565-016-0369-3.
Show Gene links Show Anatomy links

Roles of organic anion transporters (OATs) in renal proximal tubules and their localization.

Otani N , Ouchi M , Hayashi K , Jutabha P , Anzai N .


???displayArticle.abstract???
Organic anions (OAs) are secreted in renal proximal tubules in two steps. In the first step, OAs are transported from the blood through basolateral membranes into proximal tubular cells. The prototypical substrate for renal organic anion transport systems, para-aminohippurate (PAH), is transported across basolateral membranes of proximal tubular cells via OAT1 (SLC22A6) and OAT3 (SLC22A8) against an electrochemical gradient in exchange for intracellular dicarboxylates. In the second step, OAs exit into urine through apical membranes of proximal tubules. This step is thought to be performed by multidrug efflux transporters and a voltage-driven organic anion transporter. However, the molecular nature and precise functional properties of these efflux systems are largely unknown. Recently, we characterized an orphan transporter known as human type I sodium-phosphate transporter 4, hNPT4 (SLC17A3), using the Xenopus oocyte expression system. hNPT4 acts as a voltage-driven efflux transporter ("human OATv1") for several OAs such as PAH, estrone sulfate, diuretic drugs, and urate. Here, we describe a model for an OA secretory pathway in renal tubular cells in which OAs exit cells and enter the tubular lumen via hOATv1 (hNPT4). Additionally, hOATv1 functions as a common renal secretory pathway for both urate and drugs, indicating that hOATv1 may be a leak pathway for excess urate that is reabsorbed via apical URAT1 to control the intracellular urate levels. Therefore, we propose a molecular mechanism for the induction of hyperuricemia by diuretics: the diuretics enter proximal tubular cells via basolateral OAT1 and/or OAT3 and may then interfere with the NPT4-mediated apical urate efflux in the renal proximal tubule.

???displayArticle.pubmedLink??? 27614971
???displayArticle.link??? Anat Sci Int


Species referenced: Xenopus
Genes referenced: kcnk3 slc22a8