Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-52599
Sci Rep. September 28, 2016; 6 35488.

A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing.

Fu L , Wen L , Luu N , Shi YB .


Abstract
Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have been developed to identify the mutations, none other than sequencing allows the identification of the most desired mutations, i.e., out-of-frame insertions/deletions that disrupt genes. Here we report a simple and efficient method to visualize and quantify the efficiency of genomic mutations induced by genome-editing. Our approach is based on the expression of a two-color fusion protein in a vector that allows the insertion of the edited region in the genome in between the two color moieties. We show that our approach not only easily identifies developing animals with desired mutations but also efficiently quantifies the mutation rate in vivo. Furthermore, by using LacZα and GFP as the color moieties, our approach can even eliminate the need for a fluorescent microscope, allowing the analysis with simple bright field visualization. Such an approach will greatly simplify the screen for effective genome-editing enzymes and identify the desired mutant cells/animals.

PubMed ID: 27748423
PMC ID: PMC5066342
Article link: Sci Rep.

Genes referenced: act3 kidins220 sox3 thra


References:
Cermak, 2011, Pubmed[+]


Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [4.6.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556