Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5264
Mol Pharmacol 2003 Jun 01;636:1417-29. doi: 10.1124/mol.63.6.1417.
Show Gene links Show Anatomy links

Local anesthetic block of Kv channels: role of the S6 helix and the S5-S6 linker for bupivacaine action.

Nilsson J , Madeja M , Arhem P .


???displayArticle.abstract???
To gain insights in the molecular mechanisms of anesthesia, we analyzed the effects of bupivacaine on a series of voltage-gated K+ channels (Kv1.1, -1.2, -1.5, -2.1, -3.1, and -3.2) and various mutant channels derived from Kv2.1, using Xenopus laevis oocytes. Two phenomenologically different blocking effects were seen at room temperature: a time-dependent block of Kv1 and Kv3 channels (Kd between 110 and 240 microM), and a time-independent block on Kv2.1 (Kd = 220 microM). At 32 degrees C, however, Kv2.1 also showed a time-dependent block. Swapping the S6 helix between Kv1.2 and Kv2.1 introduced Kv1.2 features in Kv2.1. Critical residues were located in the N-terminal end of S6, positions 395 and 398. The triple substitution of residues 372, 373, and 374 in the S5-S6 linker decreased the bupivacaine affinity by 5-fold (Kd increased from 220 to 1170 microM). The results suggest that bupivacaine blocks Kv channels by an open-state-dependent mechanism and that Kv2.1 deviates from the other channels in allowing a partial closure of the channel with bupivacaine bound. The results also suggest that the binding site is located in the internal vestibule and that residues in the descending P-loop and the upper part of S6 are critical for the binding, most likely by allosteric mechanisms. A simple mechanistic scenario that explains the observations is presented. Thermodynamic considerations suggest that the interaction between bupivacaine and the channels is hydrophobic.

???displayArticle.pubmedLink??? 12761353
???displayArticle.link??? Mol Pharmacol


Species referenced: Xenopus laevis
Genes referenced: kcna1 kcna2 kcnb1