Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-53304
Nat Commun 2015 Aug 27;6:8076. doi: 10.1038/ncomms9076.
Show Gene links Show Anatomy links

Optical control of NMDA receptors with a diffusible photoswitch.

Laprell L , Repak E , Franckevicius V , Hartrampf F , Terhag J , Hollmann M , Sumser M , Rebola N , DiGregorio DA , Trauner D .


???displayArticle.abstract???
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca(2+) imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery.

???displayArticle.pubmedLink??? 26311290
???displayArticle.pmcLink??? PMC4560805
???displayArticle.link??? Nat Commun
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis


???attribute.lit??? ???displayArticles.show???
References [+] :
Amatrudo, Wavelength-selective one- and two-photon uncaging of GABA. 2014, Pubmed