Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5332
Am J Physiol Cell Physiol 2003 Sep 01;2853:C608-17. doi: 10.1152/ajpcell.00084.2003.
Show Gene links Show Anatomy links

Identification of an apical Cl-/HCO-3 exchanger in rat kidney proximal tubule.

Petrovic S , Ma L , Wang Z , Soleimani M .


???displayArticle.abstract???
SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates Cl-/HCO3- exchange in in vitro expression systems. We hypothesized that PAT1 along with a Cl-/HCO3- exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical Cl-/HCO3- exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit Na+-HCO3- cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl- was approximately 5.0-fold higher in the presence than in the absence of CO2/HCO3-. The Cl--dependent base transport was inhibited by approximately 61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 microM) did not affect the Cl-/HCO3- exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and Cl-/HCO3- exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical Cl-/HCO3- (and Cl-/OH-) exchanger activities in kidney proximal tubule.

???displayArticle.pubmedLink??? 12736136
???displayArticle.link??? Am J Physiol Cell Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: adm slc26a6