Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-53414
Biopharm Drug Dispos 2014 Apr 01;353:183-94. doi: 10.1002/bdd.1883.
Show Gene links Show Anatomy links

Transport characteristics and transporter-based drug-drug interactions of TM-25659, a novel TAZ modulator.

Choi MK , Kwon M , Ahn JH , Kim NJ , Bae MA , Song IS .


???displayArticle.abstract???
The in vitro metabolic stability and transport mechanism of TM-25659, a novel TAZ modulator, was investigated in human hepatocytes and human liver microsomes (HLMs) based on the preferred hepatobiliary elimination in rats. In addition, the in vitro transport mechanism and transporter-mediated drug-drug interactions were evaluated using oocytes and MDCKII cells overexpressing clinically important drug transporters. After a 1 h incubation in HLMs, 92.9 ± 9.5% and 95.5 ± 11.6% of the initial TM-25659 remained in the presence of NADPH and UDPGA, respectively. Uptake of TM-25659 readily accumulated in human hepatocytes at 37 ºC (i.e. 6.7-fold greater than that at 4 ºC), in which drug transporters such as OATP1B1 and OATP1B3 were involved. TM-25659 had a significantly greater basal to apical transport rate (5.9-fold) than apical to basal transport rate in the Caco-2 cell monolayer, suggesting the involvement of an efflux transport system. Further studies using inhibitors of efflux transporters and overexpressing cells revealed that MRP2 was involved in the transport of TM-25659. These results, taken together, suggested that TM-25659 can be actively influxed into hepatocytes and undergo biliary excretion without substantial metabolism. Additionally, TM-25659 inhibited the transport activities of OATP1B1 and OATP1B3 with IC50 values of 36.3 and 25.9 μm, respectively. TM-25659 (100 μm) increased the accumulation of the probe substrate by 160% and 213%, respectively, through the inhibition of efflux function of P-gp and MRP2. In conclusion, OATP1B1, OATP1B3, P-gp and MRP2 might be major transporters responsible for the pharmacokinetics and drug-drug interaction of TM-25659, although their contribution to in vivo pharmacokinetics needs to be further investigated.

???displayArticle.pubmedLink??? 24285344
???displayArticle.link??? Biopharm Drug Dispos


Species referenced: Xenopus laevis
Genes referenced: abcc2 slco1b3 tafazzin wwtr1