Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-53720
PLoS One January 1, 2017; 12 (5): e0177454.

Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit.

Kepchia D , Moliver S , Chohan K , Phillips C , Luetje CW .


Abstract
Response to volatile environmental chemosensory cues is essential for insect survival. The odorant receptor (OR) family is an important class of receptors that detects volatile molecules; guiding insects towards food, mates, and oviposition sites. ORs are odorant-gated ion channels, consisting of a variable odorant specificity subunit and a conserved odorant receptor co-receptor (Orco) subunit, in an unknown stoichiometry. The Orco subunit possesses an allosteric site to which modulators can bind and noncompetitively inhibit odorant activation of ORs. In this study, we characterized several halogen-substituted versions of a phenylthiophenecarboxamide Orco antagonist structure. Orco antagonist activity was assessed on ORs from Drosophila melanogaster flies and Culex quinquefasciatus mosquitoes, expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. One compound, OX1w, was also shown to inhibit odorant activation of a panel of Anopheles gambiae mosquito ORs activated by diverse odorants. Next, we asked whether Orco antagonist OX1w could affect insect olfactory behavior. A Drosophila melanogaster larval chemotaxis assay was utilized to address this question. Larvae were robustly attracted to highly diluted ethyl acetate in a closed experimental chamber. Attraction to ethyl acetate was Orco dependent and also required the odorant specificity subunit Or42b. The addition of the airborne Orco antagonist OX1w to the experimental chamber abolished larval chemotaxis towards ethyl acetate. The Orco antagonist was not a general inhibitor of sensory behavior, as behavioral repulsion from a light source was unaffected. This is the first demonstration that an airborne Orco antagonist can alter olfactory behavior in an insect. These results suggest a new approach to insect control and emphasize the need to develop more potent Orco antagonists.

PubMed ID: 28562598
PMC ID: PMC5451006
Article link: PLoS One

Genes referenced: ace hhex


Article Images: [+] show captions
References [+] :
Abuin, Functional architecture of olfactory ionotropic glutamate receptors. 2011, Pubmed


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556