Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Bioinformatics July 15, 2017; 33 (14): i83-i91.

DextMP: deep dive into text for predicting moonlighting proteins.

Khan IK , Bhuiyan M , Kihara D .

Motivation: Moonlighting proteins (MPs) are an important class of proteins that perform more than one independent cellular function. MPs are gaining more attention in recent years as they are found to play important roles in various systems including disease developments. MPs also have a significant impact in computational function prediction and annotation in databases. Currently MPs are not labeled as such in biological databases even in cases where multiple distinct functions are known for the proteins. In this work, we propose a novel method named DextMP, which predicts whether a protein is a MP or not based on its textual features extracted from scientific literature and the UniProt database. Results: DextMP extracts three categories of textual information for a protein: titles, abstracts from literature, and function description in UniProt. Three language models were applied and compared: a state-of-the-art deep unsupervised learning algorithm along with two other language models of different types, Term Frequency-Inverse Document Frequency in the bag-of-words and Latent Dirichlet Allocation in the topic modeling category. Cross-validation results on a dataset of known MPs and non-MPs showed that DextMP successfully predicted MPs with over 91% accuracy with significant improvement over existing MP prediction methods. Lastly, we ran DextMP with the best performing language models and text-based feature combinations on three genomes, human, yeast and Xenopus laevis , and found that about 2.5-35% of the proteomes are potential MPs. Availability and Implementation: Code available at . Contact:

PubMed ID: 28881966
PMC ID: PMC5870774
Article link: Bioinformatics
Grant support: R01 GM097528 NIGMS NIH HHS

External Resources:
Article Images: [+] show captions

Apweiler, 2014, Pubmed [+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.2
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556