Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54066
Brain Res 2016 Jun 15;1641Pt A:4-10. doi: 10.1016/j.brainres.2015.09.005.
Show Gene links Show Anatomy links

The acquisition of myelin: An evolutionary perspective.

Zalc B .


???displayArticle.abstract???
It has been postulated that the emergence of vertebrates was made possible by the acquisition of neural crest cells, which then led to the development of evolutionarily advantageous complex head structures (Gans and Northcutt, 1983). In this regard the contribution of one important neural crest derivative-the peripheral myelin sheath-to the success of the vertebrates has to be pointed out. Without this structure, the vertebrates, as we know them, simply could not exist. After briefly reviewing the major functions of the myelin sheath we will ask and provide tentative answers to the following three questions: when during evolution has myelin first appeared? Where has myelin initially appeared: in the CNS or in the PNS? Was it necessary to acquire a new cell type to form a myelin sheath? Careful examination of fossils lead us to conclude that myelin was acquired 425 MY ago by placoderms, the earliest hinge-jaw fishes. I argue that the acquisition of myelin during evolution has been a necessary prerequisite to permit gigantism of gnathostome species, including the sauropods. I propose that this acquisition occurred simultaneously in the PNS and CNS and that myelin forming cells are the descendants of ensheathing glia, already present in invertebrates, that have adapted their potential to synthesize large amount of membrane in response to axonal requirements. This article is part of a Special Issue entitled SI: Myelin Evolution.

???displayArticle.pubmedLink??? 26367449
???displayArticle.link??? Brain Res