Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Cell Rep October 3, 2017; 21 (1): 37-46.

Desynchronizing Embryonic Cell Division Waves Reveals the Robustness of Xenopus laevis Development.

Anderson GA , Gelens L , Baker JC , Ferrell JE .

The early Xenopus laevis embryo is replete with dynamic spatial waves. One such wave, the cell division wave, emerges from the collective cell division timing of first tens and later hundreds of cells throughout the embryo. Here, we show that cell division waves do not propagate between neighboring cells and do not rely on cell-to-cell coupling to maintain their division timing. Instead, intrinsic variation in division period autonomously and gradually builds these striking patterns of cell division. Disrupting this pattern of division by placing embryos in a temperature gradient resulted in highly asynchronous entry to the midblastula transition and misexpression of the mesodermal marker Xbra. Remarkably, this gene expression defect is corrected during involution, resulting in delayed yet normal Xbra expression and viable embryos. This implies the existence of a previously unknown mechanism for normalizing mesodermal gene expression during involution.

PubMed ID: 28978482
PMC ID: PMC5679461
Article link: Cell Rep
Grant support: [+]
Genes referenced: tbxt
GO keywords: cell division

Article Images: [+] show captions
References [+] :
Amaya, FGF signalling in the early specification of mesoderm in Xenopus. 1993, Pubmed, Xenbase

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556