Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54247
Front Plant Sci 2017 Jan 01;8:1823. doi: 10.3389/fpls.2017.01823.
Show Gene links Show Anatomy links

The Rice High-Affinity K+ Transporter OsHKT2;4 Mediates Mg2+ Homeostasis under High-Mg2+ Conditions in Transgenic Arabidopsis.

Zhang C , Li H , Wang J , Zhang B , Wang W , Lin H , Luan S , Gao J , Lan W .


???displayArticle.abstract???
Rice (Oryza sativa; background Nipponbare) contains nine HKT (high-affinity K+ transport)-like genes encoding membrane proteins belonging to the superfamily of Ktr/TRK/HKT. OsHKTs have been proposed to include four selectivity filter-pore-forming domains homologous to the bacterial K+ channel KcsA, and are separated into OsHKT1s with Na+-selective activity and OsHKT2s with Na+-K+ symport activity. As a member of the OsHKT2 subfamily, OsHKT2;4 renders Mg2+ and Ca2+ permeability for yeast cells and Xenopus laevis oocytes, besides K+ and Na+. However, physiological functions related to Mg2+in planta have not yet been identified. Here we report that OsHKT2;4 from rice (O. sativa; background Nipponbare) functions as a low-affinity Mg2+ transporter to mediate Mg2+ homeostasis in plants under high-Mg2+ environments. Using the functional complementation assay in Mg2+-uptake deficient Salmonella typhimurium strains MM281 and electrophysiological analysis in X. laevis oocytes, we found that OsHKT2;4 could rescue the growth of MM281 in Mg2+-deficient conditions and induced the Mg2+ currents in oocytes at millimolar range of Mg2+. Additionally, overexpression of OsHKT2;4 to Arabidopsis mutant lines with a knockout of AtMGT6, a gene encoding the transporter protein necessary for Mg2+ adaptation in Arabidopsis, caused the Mg2+ toxicity to the leaves under the high-Mg2+ stress, but not under low-Mg2+ environments. Moreover, this Mg2+ toxicity symptom resulted from the excessive Mg2+ translocation from roots to shoots, and was relieved by the increase in supplemental Ca2+. Together, our results demonstrated that OsHKT2;4 is a low-affinity Mg2+ transporter responsible for Mg2+ transport to aerials in plants under high-Mg2+ conditions.

???displayArticle.pubmedLink??? 29114257
???displayArticle.pmcLink??? PMC5660728
???displayArticle.link??? Front Plant Sci




???attribute.lit??? ???displayArticles.show???
References [+] :
Ariyarathna, A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. 2016, Pubmed