Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54359
Cytoskeleton (Hoboken) 2016 Jun 01;737:351-64. doi: 10.1002/cm.21311.
Show Gene links Show Anatomy links

Myosin-10 independently influences mitotic spindle structure and mitotic progression.

Sandquist JC , Larson ME , Hine KJ .


???displayArticle.abstract???
The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.

???displayArticle.pubmedLink??? 27220038
???displayArticle.pmcLink??? PMC5017926
???displayArticle.link??? Cytoskeleton (Hoboken)
???displayArticle.grants??? [+]


References [+] :
Berg, Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. 2000, Pubmed