Please note upcoming maintenance times for Xenbase - times are EST:

Wednesday 12-Dec-2018 before noon: BLAST, FTP (Xenbase will be partially functional)
Thursday 13-Dec-2018 before noon: Wiki, GBrowse, JBrowse (Xenbase will be partially functional)
Friday 14-Dec-2018 starting at 5 pm through weekend: Xenbase site and database (Xenbase will be completely down)

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54640
Curr Opin Cell Biol June 1, 2018; 52 88-95.

Subcellular scaling: does size matter for cell division?

Heald R , Gibeaux R .


Abstract
Among different species or cell types, or during early embryonic cell divisions that occur in the absence of cell growth, the size of subcellular structures, including the nucleus, chromosomes, and mitotic spindle, scale with cell size. Maintaining correct subcellular scales is thought to be important for many cellular processes and, in particular, for mitosis. In this review, we provide an update on nuclear and chromosome scaling mechanisms and their significance in metazoans, with a focus on Caenorhabditis elegans, Xenopus and mammalian systems, for which a common role for the Ran (Ras-related nuclear protein)-dependent nuclear transport system has emerged.

PubMed ID: 29501026
PMC ID: PMC5988940
Article link: Curr Opin Cell Biol
Grant support: R35 GM118183 NIGMS NIH HHS

Genes referenced: kif2a nutf2 rcc1 tpx2
GO Terms referenced: cytokinesis [+]


References:
Brown, 2007, Pubmed, Xenbase [+]


Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.10.0


Major funding for Xenbase is provided by grant P41 HD064556