Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55144
Plants (Basel) 2018 Jul 26;73:. doi: 10.3390/plants7030061.
Show Gene links Show Anatomy links

A Cyclic Nucleotide-Gated Channel, HvCNGC2-3, Is Activated by the Co-Presence of Na⁺ and K⁺ and Permeable to Na⁺ and K⁺ Non-Selectively.

Mori IC , Nobukiyo Y , Nakahara Y , Shibasaka M , Furuichi T , Katsuhara M .


???displayArticle.abstract???
Cyclic nucleotide-gated channels (CNGCs) have been postulated to contribute significantly in plant development and stress resistance. However, their electrophysiological properties remain poorly understood. Here, we characterized barley CNGC2-3 (HvCNGC2-3) by the two-electrode voltage-clamp technique in the Xenopus laevis oocyte heterologous expression system. Current was not observed in X. laevis oocytes injected with HvCNGC2-3 complementary RNA (cRNA) in a bathing solution containing either Na⁺ or K⁺ solely, even in the presence of 8-bromoadenosine 3',5'-cyclic monophosphate (8Br-cAMP) or 8-bromoguanosine 3',5'-cyclic monophosphate (8Br-cGMP). A weakly voltage-dependent slow hyperpolarization-activated ion current was observed in the co-presence of Na⁺ and K⁺ in the bathing solution and in the presence of 10 µM 8Br-cAMP, but not 8Br-cGMP. Permeability ratios of HvCNGC2-3 to K⁺, Na⁺ and Cl- were determined as 1:0.63:0.03 according to reversal-potential analyses. Amino-acid replacement of the unique ion-selective motif of HvCNGC2-3, AQGL, with the canonical motif, GQGL, resulted in the abolition of the current. This study reports a unique two-ion-dependent activation characteristic of the barley CNGC, HvCNGC2-3.

???displayArticle.pubmedLink??? 30049942
???displayArticle.pmcLink??? PMC6161278
???displayArticle.link??? Plants (Basel)


Genes referenced: camp


???attribute.lit??? ???displayArticles.show???
References [+] :
Abdel-Hamid, A suppressor screen of the chimeric AtCNGC11/12 reveals residues important for intersubunit interactions of cyclic nucleotide-gated ion channels. 2013, Pubmed