Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55498
Science January 1, 2018; 362 (6417):

Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates.

Yan L , Chen J , Zhu X , Sun J , Wu X , Shen W , Zhang W , Tao Q , Meng A .


Abstract
The vertebrate body is formed by cell movements and shape change during embryogenesis. It remains undetermined which maternal signals govern the formation of the dorsal organizer and the body axis. We found that maternal depletion of huluwa, a previously unnamed gene, causes loss of the dorsal organizer, the head, and the body axis in zebrafish and Xenopus embryos. Huluwa protein is found on the plasma membrane of blastomeres in the future dorsal region in early zebrafish blastulas. Huluwa has strong dorsalizing and secondary axis-inducing activities, which require β-catenin but can function independent of Wnt ligand/receptor signaling. Mechanistically, Huluwa binds to and promotes the tankyrase-mediated degradation of Axin. Therefore, maternal Huluwa is an essential determinant of the dorsal organizer and body axis in vertebrate embryos.

PubMed ID: 30467143
Article link: Science

Genes referenced: chrd.1 ctnnb1 gsc hwa lrp6 nodal3.1 ventx1.2 wnt11b wnt8a
GO Terms: axis specification [+]



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.0


Major funding for Xenbase is provided by grant P41 HD064556