Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56433
Dev Comp Immunol January 1, 2020; 103 103532.

Complement C1q subunit molecules from Xenopus laevis possess conserved function in C1q-immunoglobulin interaction.

Yan F , Zhou E , Liu S , Gao A , Kong L , Li B , Tu X , Guo Z , Mo J , Chen M , Ye J .


Abstract
Complement component 1q (C1q), together with C1r and C1s to form C1, recognize and bind immune complex to initiate the classical complement pathway. In this study, C1q subunit molecules (XlC1qA, XlC1qB, XlC1qC) were cloned and analyzed from Xenopus laevis (X. laevis). The open reading frame (ORF) of XlC1qA is 819 bp of nucleotide sequence encoding 272 amino acids, the ORF of XlC1qB is 711 bp encoding 236 aa, and the XlC1qC is consists of 732 bp encoding 243 aa. The deduced amino acid sequences contain a collagen-like region (CLR), Gly-X-Y repeats in the N-terminus and a C1q family domain at the C-terminus. Phylogenetic analysis revealed that the XlC1qs are clustered with the amphibian clade. Expression analysis indicated that the XlC1qs exhibited constitutive expression in all examined tissues, with the highest expression in liver. Additionally, XlC1q could interact with heat-aggregated mouse IgG and IgM, Xenopus IgM and Nile tilapia IgM, respectively, indicating the functional conservation of XlC1q binding to immunoglobulins. Further, XlC1qs can inhibit C1q-dependent hemolysis of sensitized sheep red blood cells with concentration-dependent manner. These data collectively suggest that the function of C1qs in X. laevis may be conserved in interaction with immunoglobulins, as that of mammals and teleosts.

PubMed ID: 31678076
Article link: Dev Comp Immunol


Species referenced: Xenopus laevis
Genes referenced: c1r c1s ighx