Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56747
New Phytol 2019 Apr 01;2221:286-300. doi: 10.1111/nph.15604.
Show Gene links Show Anatomy links

Characterization of the grapevine Shaker K+ channel VvK3.1 supports its function in massive potassium fluxes necessary for berry potassium loading and pulvinus-actuated leaf movements.

Nieves-Cordones M , Andrianteranagna M , Cuéllar T , Chérel I , Gibrat R , Boeglin M , Moreau B , Paris N , Verdeil JL , Zimmermann S , Gaillard I .


???displayArticle.abstract???
In grapevine, climate changes lead to increased berry potassium (K+ ) contents that result in must with low acidity. Consequently, wines are becoming 'flat' to the taste, with poor organoleptic properties and low potential aging, resulting in significant economic loss. Precise investigation into the molecular determinants controlling berry K+ accumulation during its development are only now emerging. Here, we report functional characterization by electrophysiology of a new grapevine Shaker-type K+ channel, VvK3.1. The analysis of VvK3.1 expression patterns was performed by qPCR and in situ hybridization. We found that VvK3.1 belongs to the AKT2 channel phylogenetic branch and is a weakly rectifying channel, mediating both inward and outward K+ currents. We showed that VvK3.1 is highly expressed in the phloem and in a unique structure located at the two ends of the petiole, identified as a pulvinus. From the onset of fruit ripening, all data support the role of the VvK3.1 channel in the massive K+ fluxes from the phloem cell cytosol to the berry apoplast during berry K+ loading. Moreover, the high amount of VvK3.1 transcripts detected in the pulvinus strongly suggests a role for this Shaker in the swelling and shrinking of motor cells involved in paraheliotropic leaf movements.

???displayArticle.pubmedLink??? 30735258
???displayArticle.link??? New Phytol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: akt2