Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57437
Proc Natl Acad Sci U S A 2020 Aug 18;11733:20298-20304. doi: 10.1073/pnas.2004303117.
Show Gene links Show Anatomy links

A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels.

Díaz-Franulic I , Raddatz N , Castillo K , González-Nilo FD , Latorre R .


???displayArticle.abstract???
In mammals, temperature-sensitive TRP channels make membrane conductance of cells extremely temperature dependent, allowing the detection of temperature ranging from noxious cold to noxious heat. We progressively deleted the distal carboxyl terminus domain (CTD) of the cold-activated melastatin receptor channel, TRPM8. We found that the enthalpy change associated with channel gating is proportional to the length of the CTD. Deletion of the last 36 amino acids of the CTD transforms TRPM8 into a reduced temperature-sensitivity channel (Q10 ∼4). Exposing the intracellular domain to a denaturing agent increases the energy required to open the channel indicating that cold drives channel gating by stabilizing the folded state of the CTD. Experiments in the presence of an osmoticant agent suggest that channel gating involves a change in solute-inaccessible volume in the CTD of ∼1,900 Å3 This volume matches the void space inside the coiled coil according to the cryogenic electron microscopy structure of TRPM8. The results indicate that a folding-unfolding reaction of a specialized temperature-sensitive structure is coupled to TRPM8 gating.

???displayArticle.pubmedLink??? 32747539
???displayArticle.pmcLink??? PMC7443914
???displayArticle.link??? Proc Natl Acad Sci U S A


Genes referenced: trpm8

References [+] :
Ando, Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. 2008, Pubmed