Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57533
Bioessays 2021 Jan 01;431:e2000181. doi: 10.1002/bies.202000181.
Show Gene links Show Anatomy links

Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors.

Falbo L , Costanzo V .


???displayArticle.abstract???
During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.

???displayArticle.pubmedLink??? 33165968
???displayArticle.link??? Bioessays
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: ssrp1