Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Proc Natl Acad Sci U S A. January 21, 2003; 100 (2): 745-50.

Specificity of activation by phosphoinositides determines lipid regulation of Kir channels.

Rohács T , Lopes CM , Jin T , Ramdya PP , Molnár Z , Logothetis DE .

Phosphoinositides are critical regulators of ion channel and transporter activity. Defects in interactions of inwardly rectifying potassium (Kir) channels with phosphoinositides lead to disease. ATP-sensitive K(+) channels (K(ATP)) are unique among Kir channels in that they serve as metabolic sensors, inhibited by ATP while stimulated by long-chain (LC) acyl-CoA. Here we show that K(ATP) are the least specific Kir channels in their activation by phosphoinositides and we demonstrate that LC acyl-CoA activation of these channels depends on their low phosphoinositide specificity. We provide a systematic characterization of phosphoinositide specificity of the entire Kir channel family expressed in Xenopus oocytes and identify molecular determinants of such specificity. We show that mutations in the Kir2.1 channel decreasing phosphoinositide specificity allow activation by LC acyl-CoA. Our data demonstrate that differences in phosphoinositide specificity determine the modulation of Kir channel activity by distinct regulatory lipids.

PubMed ID: 12525701
PMC ID: PMC141067
Article link: Proc Natl Acad Sci U S A.
Grant support: HL 59949 NHLBI NIH HHS , R01 HL059949 NHLBI NIH HHS

Genes referenced: kcnj2

External Resources:

Ashcroft, 1999, Pubmed[+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556