Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Cell Sci January 1, 2003; 116 (Pt 1): 29-38.

Multiple connexins contribute to intercellular communication in the Xenopus embryo.

Landesman Y , Postma FR , Goodenough DA , Paul DL .

To explore the role of gap junctional intercellular communication (GJIC) during Xenopus embryogenesis, we utilized the host-transfer and antisense techniques to specifically deplete Cx38, the only known maternally expressed connexin. Cx38-depleted embryos developed normally but displayed robust GJIC between blastomeres at 32-128 cell stages, suggesting the existence of other maternal connexins. Analysis of embryonic cDNA revealed maternal expression of two novel connexins, Cx31 and Cx43.4, and a third, Cx43, that had been previously identified as a product of zygotic transcription. Thus, the early Xenopus embryo contains at least four maternal connexins. Unlike Cx38, expression of Cx31, Cx43 and Cx43.4 continue zygotically. Of these, Cx43.4 is the most abundant, accumulating significantly in neural structures including the brain, the eyes and the spinal cord.

PubMed ID: 12456713
Article link: J Cell Sci
Grant support: [+]
Genes referenced: cx38 gja1 gjb1 gjb3 gjc1 ncam1

Article Images: [+] show captions

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556