Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6226
Development. December 1, 2002; 129 (24): 5743-52.

Beta-catenin/Tcf-regulated transcription prior to the midblastula transition.



Abstract
Following fertilization, the zygotic genome in many organisms is quiescent until the midblastula transition (MBT), when large-scale transcription begins. In Xenopus embryos, for example, transcription is believed to be repressed until the twelfth cell division. Thus, although dorsal-ventral patterning begins during the first cell cycle, little attention has been given to transcriptional regulation in pre-MBT development. We present evidence that regulated transcription begins during early cleavage stages and that the beta-catenin-Tcf complex is required for the transcription of the Xenopus nodal genes Xnr5 and Xnr6 as early as the 256-cell stage. Moreover, inhibition of beta-catenin/Tcf function can block dorsal development, but only if the inhibition begins early and is maintained throughout pre-MBT stages. Dorsal development can be rescued in ventralized embryos if Tcf-dependent transcription is activated prior to MBT, but activation of Tcf after MBT cannot rescue ventralized embryos, suggesting that beta-catenin/Tcf-dependent transcription is required prior to MBT for dorsal-ventral patterning in Xenopus.

PubMed ID: 12421713
Article link: Development.

Genes referenced: ctnnb1 nodal nodal1 nodal5 nodal5.2 nodal6

Morpholinos referenced: ctnnb1 MO1


My Xenbase: [ Log-in / Register ]
version: [4.6.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556