Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-6319
Development November 1, 2002; 129 (22): 5227-39.

The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.

Hikasa H , Shibata M , Hiratani I , Taira M .


Abstract
The Spemann organizer plays a central role in neural induction, patterning of the neuroectoderm and mesoderm, and morphogenetic movements during early embryogenesis. By seeking genes whose expression is activated by the organizer-specific LIM homeobox gene Xlim-1 in Xenopus animal caps, we isolated the receptor tyrosine kinase Xror2. Xror2 is expressed initially in the dorsal marginal zone, then in the notochord and the neuroectoderm posterior to the midbrain-hindbrain boundary. mRNA injection experiments revealed that overexpression of Xror2 inhibits convergent extension of the dorsal mesoderm and neuroectoderm in whole embryos, as well as the elongation of animal caps treated with activin, whereas it does not appear to affect cell differentiation of neural tissue and notochord. Interestingly, mutant constructs in which the kinase domain was point-mutated or deleted (named Xror2-TM) also inhibited convergent extension, and did not counteract the wild-type, suggesting that the ectodomain of Xror2 per se has activities that may be modulated by the intracellular domain. In relation to Wnt signaling for planar cell polarity, we observed: (1) the Frizzled-like domain in the ectodomain is required for the activity of wild-type Xror2 and Xror2-TM; (2) co-expression of Xror2 with Xwnt11, Xfz7, or both, synergistically inhibits convergent extension in embryos; (3) inhibition of elongation by Xror2 in activin-treated animal caps is reversed by co-expression of a dominant negative form of Cdc42 that has been suggested to mediate the planar cell polarity pathway of Wnt; and (4) the ectodomain of Xror2 interacts with Xwnts in co-immunoprecipitation experiments. These results suggest that Xror2 cooperates with Wnts to regulate convergent extension of the axial mesoderm and neuroectoderm by modulating the planar cell polarity pathway of Wnt.

PubMed ID: 12399314
Article link: Development

Genes referenced: cdc42 en2 fzd7 gal.2 inhba lhx1 myc nrp1 ror2 sesn1 tbx2 wnt11b wnt8a


Article Images: [+] show captions


Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.3


Major funding for Xenbase is provided by grant P41 HD064556