Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Bioessays October 1, 2002; 24 (10): 881-4.

Increasingly complex: new players enter the Wnt signaling network.

Pandur P , Maurus D , Kühl M .

Wnt proteins can activate different intracellular signaling cascades in various organisms by interacting with receptors of the Frizzled family. The first identified Wnt signaling pathway, the Wnt/beta-catenin pathway, has been studied in much detail and is highly conserved among species. As to non-canonical Wnt pathways, the current situation is more nebulous partly because the intracellular mediators of this pathway are not yet fully understood and, in some cases, even identified. However, there are increasing data that prove the existence of non-canonical Wnt signaling and demonstrate its involvement in different developmental processes. In vertebrates, Wnt-11 and Wnt-5A can activate the Wnt/JNK pathway, which resembles the planar cell polarity pathway in Drosophila. The Wnt/Ca(2+)-pathway has only been described in Xenopus and zebrafish so far and it is unclear whether it also exists in other organisms. Two recent papers provide us with new insight into non-canonical Wnt signaling by (1) presenting a new intracellular mediator of non-canonical signaling in Xenopus1 and (2) implicating the existence of an additional non-canonical Wnt signaling pathway in flies.

PubMed ID: 12325120
Article link: Bioessays

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556