Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Growth Differ February 1, 2002; 44 (1): 55-61.

Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry.

Kitaguchi T , Mizugishi K , Hatayama M , Aruga J , Mikoshiba K .

The Brachyury gene has a critical role in the formation of posterior mesoderm and notochord in vertebrate development. A recent study showed that Brachyury is also responsible for the formation of the left-right (L-R) axis in mouse and zebrafish. However, the role of Brachyury in L-R axis specification is still elusive. Here, it is demonstrated that Brachyury is involved in L-R specification of the Xenopus laevis embryo and regulates expression of Zic3, which controls the L-R specification process. Overexpression of Xenopus Brachyury (Xbra) and dominant-negative type Xbra (Xbra-EnR) altered the orientation of heart and gut looping, concomitant with disturbed laterality of nodal-related 1 (Xnr1) and Pitx2 expression, both of which are normally expressed in the left lateral plate mesoderm. Furthermore, activation of inducible type Xbra (Xbra-GR) induces Zic3 expression within 20 min. These results suggest that a role of Brachyury in L-R specification may be the direct regulation of Zic3 expression.

PubMed ID: 11869292
Article link: Dev Growth Differ

Genes referenced: bix1.1 bix1.3 nodal nodal1 pitx2 tbxt wnt11 zic3

External Resources:
Article Images: [+] show captions

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.2
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556