Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Exp Zool. November 1, 2001; 290 (6): 652-61.

Covariance of ion flux measurements allows new interpretation of Xenopus laevis oocyte physiology.

Faszewski EE , Kunkel JG .

An animal-vegetal net ionic current identified previously using voltage probe techniques in maturing Xenopus laevis oocytes has now been investigated using noninvasive ion-selective microelectrodes. Three-dimensional fluxes of hydrogen (H(+)), potassium (K(+)), and bicarbonate (HCO(3)(-)) were characterized with respect to the developmental stage and hemisphere of the oocyte and presence of surrounding follicular tissue. Variable effluxes of H(+) and HCO(3)(-) were recorded from both the animal and vegetal hemispheres. Variable influxes and effluxes of K(+) were also observed. The equatorial region, silent by voltage probe, exhibited fluxes of H(+) and K(+). Simultaneous measurement of pairs of ions allowed correlation analysis of two ion types. Notably for H(+) and K(+) data, positive and negative correlation at animal and vegetal poles respectively offer an explanation of the unpredictable results obtained when individual ions were observed independently.

PubMed ID: 11748614
Article link: J Exp Zool.

External Resources:

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556