Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Physiol (Lond). October 15, 2001; 536 (Pt 2): 459-70.

A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.

Fu J , Ji HL , Naren AP , Kirk KL .

1. The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is activated by protein kinase A (PKA) phosphorylation of its R domain and by ATP binding at its nucleotide-binding domains (NBDs). Here we investigated the functional role of a cluster of acidic residues in the amino terminal tail (N-tail) that also modulate CFTR channel gating by an unknown mechanism. 2. A disease-associated mutant that lacks one of these acidic residues (D58N CFTR) exhibited lower macroscopic currents in Xenopus oocytes and faster deactivation following washout of a cAMP -activating cocktail than wild-type CFTR. 3. In excised membrane patches D58N CFTR exhibited a two-fold reduction in single channel open probability due primarily to shortened open channel bursts. 4. Replacing this and two nearby acidic residues with alanines (D47A, E54A, D58A) also reduced channel activity, but had negligible effects on bulk PKA phosphorylation or on the ATP dependence of channel activation. 5. Conversely, the N-tail triple mutant exhibited a markedly inhibited response to AMP-PNP, a poorly hydrolysable ATP analogue that can nearly lock open the wild-type channel. The N-tail mutant had both a slower response to AMP-PNP (activation half-time of 140 +/- 20 s vs. 21 +/- 4 s for wild type) and a lower steady-state open probability following AMP-PNP addition (0.68 +/- 0.08 vs. 0.92 +/- 0.03 for wild type). 6. Introducing the N-tail mutations into K1250A CFTR, an NBD2 hydrolysis mutant that normally exhibits very long open channel bursts, destabilized the activity of this mutant as evidenced by decreased macroscopic currents and shortened open channel bursts. 7. We propose that this cluster of acidic residues modulates the stability of CFTR channel openings at a step that is downstream of ATP binding and upstream of ATP hydrolysis, probably at NBD2.

PubMed ID: 11600681
PMC ID: PMC2278861
Article link: J Physiol (Lond).
Grant support: DK53090 NIDDK NIH HHS , DK56796 NIDDK NIH HHS , P50 DK053090 NIDDK NIH HHS , DK56796 NIDDK NIH HHS , R56 DK056796 NIDDK NIH HHS , R01 DK056796 NIDDK NIH HHS , DK53090 NIDDK NIH HHS

Genes referenced: cftr pnp

Abman, 1991, Pubmed[+]

My Xenbase: [ Log-in / Register ]
version: [4.4.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556