Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8599
Development. July 1, 2001; 128 (13): 2525-36.

Requirement of FoxD3-class signaling for neural crest determination in Xenopus.

Sasai N , Mizuseki K , Sasai Y .


Abstract
Fox factors (winged-helix transcription factors) play important roles in early embryonic patterning. We show here that FoxD3 (Forkhead 6) regulates neural crest determination in Xenopus embryos. Expression of FoxD3 in the presumptive neural crest region starts at the late gastrula stage in a manner similar to that of Slug, and overlaps with that of Zic-r1. When overexpressed in the embryo and in ectodermal explants, FoxD3 induces expression of neural crest markers. Attenuation of FoxD3-related signaling by a dominant-negative FoxD3 construct (FoxD3delN) inhibits neural crest differentiation in vivo without suppressing the CNS marker Sox2. Interestingly, these loss-of-function phenotypes are reversed by coinjecting SLUG: In animal cap explants, neural crest differentiation induced by Slug and Wnt3a is also inhibited by FoxD3delN but not by a dominant-negative form of XBF2. Loss-of-function studies using dominant-negative forms of FoxD3 and Slug indicate that Slug induction by Zic factors requires FoxD3-related signaling, and that FoxD3 and Slug have different requirements in inducing downstream neural crest markers. These data demonstrate that FoxD3 (or its closely related factor) is an essential upstream regulator of neural crest determination.

PubMed ID: 11493569
Article link: Development.

Genes referenced: ets1 foxd1 foxd3 snai2 sox2 twist1 wnt3a zic1
Antibodies referenced:
Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [3.2.2]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556