Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Neurosci. August 15, 2001; 21 (16): 5952-61.

Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons.

Cummins TR , Aglieco F , Renganathan M , Herzog RI , Dib-Hajj SD , Waxman SG .

Although rat brain Nav1.3 voltage-gated sodium channels have been expressed and studied in Xenopus oocytes, these channels have not been studied after their expression in mammalian cells. We characterized the properties of the rat brain Nav1.3 sodium channels expressed in human embryonic kidney (HEK) 293 cells. Nav1.3 channels generated fast-activating and fast-inactivating currents. Recovery from inactivation was relatively rapid at negative potentials (<-80 mV) but was slow at more positive potentials. Development of closed-state inactivation was slow, and, as predicted on this basis, Nav1.3 channels generated large ramp currents in response to slow depolarizations. Coexpression of beta3 subunits had small but significant effects on the kinetic and voltage-dependent properties of Nav1.3 currents in HEK 293 cells, but coexpression of beta1 and beta2 subunits had little or no effect on Nav1.3 properties. Nav1.3 channels, mutated to be tetrodotoxin-resistant (TTX-R), were expressed in SNS-null dorsal root ganglion (DRG) neurons via biolistics and were compared with the same construct expressed in HEK 293 cells. The voltage dependence of steady-state inactivation was approximately 7 mV more depolarized in SNS-null DRG neurons, demonstrating the importance of background cell type in determining physiological properties. Moreover, consistent with the idea that cellular factors can modulate the properties of Nav1.3, the repriming kinetics were twofold faster in the neurons than in the HEK 293 cells. The rapid repriming of Nav1.3 suggests that it contributes to the acceleration of repriming of TTX-sensitive (TTX-S) sodium currents that are seen after peripheral axotomy of DRG neurons. The relatively rapid recovery from inactivation and the slow closed-state inactivation kinetics of Nav1.3 channels suggest that neurons expressing Nav1.3 may exhibit a reduced threshold and/or a relatively high frequency of firing.

PubMed ID: 11487618
Article link: J Neurosci.

Genes referenced: drg1 dtl nav1 scn3a
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556