Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8854
Proc Natl Acad Sci U S A. June 19, 2001; 98 (13): 7069-71.

Think globally, translate locally: what mitotic spindles and neuronal synapses have in common.

Richter JD .


Abstract
Early metazoan development is programmed by maternal mRNAs inherited by the egg at the time of fertilization. These mRNAs are not translated en masse at any one time or at any one place, but instead their expression is regulated both temporally and spatially. Recent evidence has shown that one maternal mRNA, cyclin B1, is concentrated on mitotic spindles in the early Xenopus embryo, where its translation is controlled by CPEB (cytoplasmic polyadenylation element binding protein), a sequence-specific RNA binding protein. Disruption of the spindle-associated translation of this mRNA results in a morphologically abnormal mitotic apparatus and inhibited cell division. Mammalian neurons, particularly in the synapto-dendritic compartment, also contain localized mRNAs such as that encoding alpha-CaMKII. Here, synaptic activation drives local translation, an event that is involved in synaptic plasticity and possibly long-term memory storage. Synaptic translation of alpha-CaMKII mRNA also appears to be controlled by CPEB, which is enriched in the postsynaptic density. Therefore, CPEB-controlled local translation may influence such seemingly disparate processes as the cell cycle and synaptic plasticity.

PubMed ID: 11416189
PMC ID: PMC34624
Article link: Proc Natl Acad Sci U S A.

Genes referenced: ccnb1 cpeb1
Antibodies referenced:

My Xenbase: [ Log-in / Register ]
version: [3.2.2]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556