Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8894
J Biol Chem 2001 Aug 17;27633:30942-7. doi: 10.1074/jbc.M104653200.
Show Gene links Show Anatomy links

A lithium-induced conformational change in serotonin transporter alters cocaine binding, ion conductance, and reactivity of Cys-109.

Ni YG , Chen JG , Androutsellis-Theotokis A , Huang CJ , Moczydlowski E , Rudnick G .


???displayArticle.abstract???
Inactivation of serotonin transporter (SERT) expressed in HeLa cells by [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) occurred much more readily when Na(+) in the reaction medium was replaced with Li(+). This did not result from a protective effect of Na(+) but rather from a Li(+)-specific increase in the reactivity of Cys-109 in the first external loop of the transporter. Li(+) alone of the alkali cations caused this increase in reactivity. Replacing Na(+) with N-methyl-d-glucamine (NMDG(+)) did not reduce the affinity of cocaine for SERT, as measured by displacement of a high affinity cocaine analog, but replacement of Na(+) with Li(+) led to a 2-fold increase in the K(D) for cocaine. The addition of either cocaine or serotonin (5-HT) protected SERT against MTSET inactivation. When SERT was expressed in Xenopus oocytes, inward currents were elicited by superfusing the cell with 5-HT (in the presence of Na(+)) or by replacing Na(+) with Li(+) but not NMDG(+). MTSET treatment of oocytes in Li(+) but not in Na(+) decreased both 5-HT and Li(+) induced currents, although 5-HT-induced currents were inhibited to a greater extent. Na(+) antagonized the effects of Li(+) on both inactivation and current. These results are consistent with Li(+) inducing a conformational change that exposes Cys-109, decreases cocaine affinity, and increases the uncoupled inward current.

???displayArticle.pubmedLink??? 11408487
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus
Genes referenced: slc6a4l