Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9096
J Comp Neurol May 28, 2001; 434 (2): 209-32.

Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord.

Sánchez-Camacho C , Marín O , Smeets WJ , Ten Donkelaar HJ , González A .


Abstract
Immunohistochemical studies with antibodies against tyrosine hydroxylase, dopamine, and noradrenaline have revealed that the spinal cord of anuran, urodele, and gymnophionan (apodan) amphibians is abundantly innervated by catecholaminergic (CA) fibers and terminals. Because intraspinal cells occur in all three orders of amphibians CA, it is unclear to what extent the CA innervation of the spinal cord is of supraspinal origin. In a previous study, we showed that many cell groups throughout the forebrain and brainstem project to the spinal cord of two anurans (the green frog, Rana perezi, and the clawed toad, Xenopus laevis), a urodele (the Iberian ribbed newt, Pleurodeles waltl), and a gymnophionan (the Mexican caecilian, Dermophis mexicanus). To determine the exact site of origin of the supraspinal CA innervation of the amphibian spinal cord, retrograde tracing techniques were combined with immunohistochemistry for tyrosine hydroxylase in the same sections. The double-labeling experiments demonstrated that four brain centers provide CA innervation to the amphibian spinal cord: 1.) the ventrolateral component of the posterior tubercle in the mammillary region, 2.) the periventricular nucleus of the zona incerta in the ventral thalamus, 3.) the locus coeruleus, and 4.) the nucleus of the solitary tract. This pattern holds for all three orders of amphibians, except for the CA projection from the nucleus of the solitary tract in gymnophionans. There are differences in the strength of the projections (based on the number of double-labeled cells), but in general, spinal functions in amphibians are controlled by CA innervation from brain centers that can easily be compared with their counterparts in amniotes. The organization of the CA input to the spinal cord of amphibians is largely similar to that described for mammals. Nevertheless, by using a segmental approach of the CNS, a remarkable difference was observed with respect to the diencephalic CA projections.

PubMed ID: 11331525
Article link: J Comp Neurol