Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9327
Genes Dev. March 15, 2001; 15 (6): 774-88.

A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts.

Voeltz GK , Ongkasuwan J , Standart N , Steitz JA .


Abstract
An in vitro system that recapitulates the in vivo effect of AU-rich elements (AREs) on mRNA deadenylation has been developed from Xenopus activated egg extracts. ARE-mediated deadenylation is uncoupled from mRNA body decay, and the rate of deadenylation increases with the number of tandem AUUUAs. A novel ARE-binding protein called ePAB (for embryonic poly(A)-binding protein) has been purified from this extract by ARE affinity selection. ePAB exhibits 72% identity to mammalian and Xenopus PABP1 and is the predominant poly(A)-binding protein expressed in the stage VI oocyte and during Xenopus early development. Immunodepletion of ePAB increases the rate of both ARE-mediated and default deadenylation in vitro. In contrast, addition of even a small excess of ePAB inhibits deadenylation, demonstrating that the ePAB concentration is critical for determining the rate of ARE-mediated deadenylation. These data argue that ePAB is the poly(A)-binding protein responsible for stabilization of poly(A) tails and is thus a potential regulator of mRNA deadenylation and translation during early development.

PubMed ID: 11274061
PMC ID: PMC312653
Article link: Genes Dev.
Grant support: CA16038 NCI NIH HHS , CA16038 NCI NIH HHS , CA16038 NCI NIH HHS , CA16038 NCI NIH HHS , CA16038 NCI NIH HHS , CA16038 NCI NIH HHS

Genes referenced: pabpc1 pabpc1l pabpc4
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556