Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9441
J Cell Biol. March 5, 2001; 152 (5): 985-96.

Evidence for a replication function of FFA-1, the Xenopus orthologue of Werner syndrome protein.

Chen CY , Graham J , Yan H .


Abstract
DNA replication in higher eukaryotic cells occurs at a large number of discrete sites called replication foci. We have previously purified a protein, focus-forming activity 1 (FFA-1), which is involved in the assembly of putative prereplication foci in Xenopus egg extracts. FFA-1 is the orthologue of the Werner syndrome gene product (WRN), a member of the RecQ helicase family. In this paper we show that FFA-1 colocalizes with sites of DNA synthesis and the single-stranded DNA binding protein, replication protein A (RPA), in nuclei reconstituted in the egg extract. In addition, we show that two glutathione S-transferase FFA-1 fusion proteins can inhibit DNA replication in a dominant negative manner. The dominant negative effect correlates with the incorporation of the fusion proteins into replication foci to form "hybrid foci," which are unable to engage in DNA replication. At the biochemical level, RPA can interact with FFA-1 and specifically stimulates its DNA helicase activity. However, in the presence of the dominant negative mutant proteins, the stimulation is prevented. These results provide the first direct biochemical evidence of an important role for FFA-1 in DNA replication.

PubMed ID: 11238454
PMC ID: PMC2198806
Article link: J Cell Biol.
Grant support: R01-GM57962-02 NIGMS NIH HHS

Genes referenced: rpa1 wrn zfp36
Antibodies referenced:
Morpholinos referenced:
Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556